Spatial Data Mining with the Application of Spectral Clustering: A Trend Detection Approach
نویسندگان
چکیده
منابع مشابه
Spatial Data Mining with the Application of Spectral Clustering: A Trend Detection Approach
Spectral clustering in spatial data mining plays a very important and innovative role due to its capacity of handling of large size of data ,effective application of linear algebra to solve graphical representation and problems, and application of very low cost of clustering algorithms like k-nearest or є neighbourhood graph. Most of the research in this area is focused on efficient query proce...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Data Mining: A Clustering Application
Developing a good clustering technique is a challenging task in data mining. Several models, such as artificial neural network approaches and genetic algorithms, represent a promising approach to address this challenge. This paper presents an experiment comparing a map-based training method used for clustering with a traditional clustering method. We test the effectiveness of both methods in he...
متن کاملNonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کاملMining Spatial Data via Clustering
Contributions from researchers in Knowledge Discovery are producing essential tools in order to better understand the typically large amounts of spatial data in Geographical Information Systems. Clustering techniques are proving to be valuable in providing exploratory analysis functionality while supporting approaches for automated pattern discovery in spatially referenced data and for the iden...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2017
ISSN: 0975-8887
DOI: 10.5120/ijca2017915252